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We have discovered a large (>104) reactivity change of vinyllithium deri- 

vatives 1 in the transmetallation reaction with 2-methyl-l-phenyl-propene 2 

to give the ally1 anion 3 together with $, the parent hydrocarbon of 1; Stu- 

dying the kinetics in tetrahydrofuran (THF) solution by 1 
H nmr, we found the 

sequence of reactivities to resemble that for (Z/E)-isomerization' of l_. 

R:, ,R’ F" 

c=c + H 

R3’ ‘Li 
H-_CH&/ 

2 
I 

1 - 
For an evaluation of the general rate equation (l), one has to know the 

order of reaction, n, as well as the aggregation number, x, for the organo- 

lithium compound RxLix which deprotonates 2. Approximate reactivities kV may 

be determined under pseudo-first order conditions, eq. (2); if RxLix is pre- 

sent in excess and its concentration not far from unity, the numerical error 

is not large. 
-d[RxLixJ/dt = k [RxLixp [,2] 

-d[s]/dt = -xd[R,Li,]/dt = ky [2] 

a-Aryl-vinyllithium Compounds with Reaction Order 3/2 

3 + (polystyrene) 

+ H,C/C\‘CAH - - 
& 2 L6H5 da 

(1) 

Deprotonation of 2 by an excess of a-phenyl-vinyllithium' 12 proceeds with 

quantitative formation of 3. Concentrations were monitored as a function of 
- ^ 

time as described previously.L The concentration of 2 increased at a rate 

equal to that measured for the decrease of the formal concentration, f, of 

RLi (g) and that of the olefin (2) concentration, c. After consumption of 

2, f remained constant until the reaction was started again by injection of 
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more olefin 2. Thus stoichiometric conversion of E is observed even though 

the expected styrene & polymerizes immediately. 

A first order of reaction with respect to 2 was estimated from the slopes 

of the conversion curves at equal RLi concentration, fo, but varying amounts 

of 2. Accordingly, pseudo-first order plots, eq. (2), were linear for 2 if f. 

was large, yielding the approximate rate constants k,+,in Table I. Since kY 

varied roughly as E , we considered the reaction to be of 0.5 order with 

respect to E. As explained previously, lg2 it may then be inferred that dis- 

sociation of RxLi x into two sub-units is kinetically important. Taking the 

simplest possibility of a dimeric ground state, the rate law of eq. (3) app- 

lies. This may be rewritten as.eq. (4) with c = [ZZ] and f = 2[R2Li2] (as mea- 

sured by nmr intensities). It turns out that integration is possible in clo- 

-d[R2Li2]/dt = k3/2 [21 lm 

-df/dt = p k3,2 (f -f. +co)v 

(3) 

(4) 

v -1x 
ifo~ci log ~ +11~ = Y = -2.303 Fk3/zt + const (5) 

sed form to give y in eq. (5) which is valid for fo>co (starting concentra- 

tions). Plots of y versus time showed good linearity over up to 2.9 half- 

lives, confirming a total order 3/2 for the reaction. 

w, /CsH5 
c=c 

H3C’ ‘Li 

& 

+ 2 2 + 
H3C\ /GHs 

,c=c 

H3C ‘H 

2 

The rate constants k 3/2 (Table I) are smaller than those for a-phenyl-O,B- 

dimethyl-vinyllithium lb. The orders of reaction in this case have been 

shown 
2 

to be 0.5 for j& and unity for s. Since 12 metallates g with regener- 

ation of 2 (42), pseudo-first order constants (with respect to g) cannot be 

measured, but were computed from ky = Fk3/2E 
for comparison with other 

derivatives (entry 5 in Table I). The known temperature dependence2 was used 

to extrapolate the rate constant to -44O (entry 6), relating it to the next 

example. 

Past Deprotonation by 2-(l-Lithio-benzylidene)-l,l,3,3-tetramethyl-indan 

+2- 
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Table I. Formal starting concentrations (fo) and rate constants k for reac- 

tions of vinyllithium derivatives RLi with olefin z (co) in [D,]THF. 

fO 
C Temp. 

4 
Entry RLi 0 I0 k3/2 

relative 

M M OC &/2 s-1 rates k& 

1 % 0.77 0.27 +25 I.54 1.24 20.12 

2 !z 0.50 0.16 +25 1.13 I. I5 20.17 

3 Et 0.60 0.20 +25 1.50 1.31 fO.13 =_ 1 

4 lE 0.40 0.35 +25 0.95 +0.2 

5 1% 0.27 0.08 +26.5 14.7 a 20 _+2 10 
6 E 0.27 0.08 -44 ca. 

0.07 
b ca. 0.1 b 

IO 

7. 'E 0.28 0.14 -44 0.78 20.15 110 

8 E 2.6 0.38 +26 0.0084 ko.002 0.006 

9 nC4H9Li I.2 0.45 +29 2.6 20.4 1.7 

a) see ref. .2; 0.93 M LiBr b) extrapolated 

The title compound s is very reactive' and metallates p readily at -44 
0 

to yield 2 and 2-benzylidene-1,1,3,3-tetramethyl-indan 42 quantitatively. A 

pseudo-first order plot with respect to 2 showed acceptable linearity over 

more than two half-lives. No attempts were made to determine the orders of 

reaction more precisely because the numerical value of the rate constant 

would not have changed very much. Table I (entry 7) shows that 2 is more 

reactive than lb (entry 6) at the same temperature. 

Slow Deprotonation by Vinyllithium ' 

H\ /H 
C=C 

H’ 
+ z----- “\C=c/” 

2 
‘Li H’ ‘H 

G 
A very slow reaction (entry 8 in Table I; half-life ca. 43 h) occurs with 

vinyllithium Id after introduction of olefin 2 _. Formation of 2 and ethylene 

42 is equal within experimental error to the consumption of g and 2. As 

above, the order of reaction was not investigated. 

Butyllithium 

The deprotonation of 2 by n-butyllithium can be conveniently followed at 

+29’ in the usual way. The pseudo-first order constant (entry 9 in Table I) 

is comparable to that of s. A little more than one equivalent of butylli- 

thium was consumed per mol of s, but no attempts were made to correct for 

the very slow decomposition by [D8)THF and for ethylene addition. 
4 
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Discussion 

Vinyllithium (ld) and butyllithium are reported to be tetrameric in TRF5 

and to deprotonate triphenylmethane 5 with a rate ratio of ca. l/5. The ratio 

for addition to l,l-diphenyl-ethylene5 was l/2640. In metallation of olefin 

2, we find relative rates of ca. 1/300. Such sequences may be somewhat de- 

pendent on concentrations if compounds with different orders of reaction are 

to be compared. ' The reactivity scale (k; relative to la) of vinyllithium 

derivatives for deprotonation of 2 in THF is shown in the last column of Ta- 

ble I. It may depend on an interplay of several contributions: (i) Change of 

aggregation in the ground state, (ii) substituent-dependent basicity, and 

(iii) steric hindrance against approach of olefin ,2 in the transition state. 

An a-phenyl group is not expected to increase the basicity of 12 over that 

of ld or to decrease steric hindrance. Therefore, the considerably enhanced 

reactivity of & as compared to the tetrameric vinyllithium E indicates 2 

to be less aggregated (perhaps dimeric, ' factor i). Further substitution of 

the vinylic D-hydrogen atoms by two methyl groups in 1,b will increase the ba- 

sicity (or nucleophilicity; factor ii) and results in a tenfold rate enhance- 

ment. Another elevenfold acceleration is caused by two bulky 

stituents in E (perhaps monomeric') and may reflect competition of factors 

(i) and (iii). 

The deprotonation reactions described here exhibit kinetic features2 very 

similar to those of (E/Z)-isomerization (topomerization)' of 2. The occur- 

ence of some common intermediates in both cases is compatible with the ob- 

served 0.5 orders of reaction and the activation parameters. 192 Considering 

substituents, we note that tetrameric vinyllithiun and its alkyl-substituted 

derivatives do not show any tendency for (E/Z)-topomerization. 
6 

As above, an 

a-phenyl group is essential for obtaining measurable rates, ' presumably be- 

cause of de-aggregation (factor i) and charge stabilization(factor ii). Since 

factor (iii) is irrelevant for carbanion inversion, it is reasonable that 

steric compression in 2 accelerates the topomerization 24200fold' (com- 

pared to E) but impedes the approach of ,2 (IlOfold acceleration only, Table 

I). However, the relative importance of steric acceleration must be evalua- 

ted from further studies on model compounds. 
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