Tetrahedron Letters No. 52, pp 4659 - 4662, 1977. Pergamon Press. Printed in Great Britain.

REACTIVITY SCALE OF VINYLLITHIUM COMPOUNDS IN TRANSMETALLATION WITH B , B -DIMETHYL-STYRENE

*** Rudolf Knorr and Ernst Lattke** Institut für Organische Chemie der Universität München **Karlstr. 23, D-8000 Miinchen 2, Germany**

(Received in UK 18 October 1977; **accepted** for **publication** 3 November 1977)

We have discovered a large (>10⁴) reactivity change of vinyllithium deri**vatives 1 in the transmetallation reaction with 2-methyl-l-phenyl-propene 2** to give the allyl anion $\frac{1}{\infty}$ together with $\frac{1}{\infty}$, the parent hydrocarbon of 1. Studying the kinetics in tetrahydrofuran (THF) solution by ¹H nmr, we found the **sequence of reactivities to resemble that for (Z/E)-isomerization' of l_.**

For an evaluation of the general rate equation (1), one has to know the **order of reaction, n, as well as the aggregation number, x, for the organo**lithium compound R_xLi_x which deprotonates 2. Approximate reactivities k_{γ} may be determined under pseudo-first order conditions, eq. (2); if R_xLi_x is pre**sent in excess and its concentration not far from unity, the numerical error is not large.**

$$
-d[R_{x}Li_{x}]/dt = k[R_{x}Li_{x}]^{n} [z]
$$
 (1)

$$
-d\left[\frac{2}{2}\right]/dt = -xd\left[R_xLi_x\right]/dt = k_y\left[\frac{2}{2}\right]
$$
 (2)

a-Aryl-vinyllithium Compounds with Reaction Order 3/2

Deprotonation of 2 by an excess of a-phenyl-vinyllithium' 12 proceeds with quantitative formation of 3. Concentrations were monitored as a function of - ^ time as described previously. The concentration of 3 increased at a rate **equal to that measured for the decrease of the formal concentration, f, of RLi (g) and that of the olefin (2) concentration, c. After consumption of 2, f remained constant until the reaction was started again by injection of** more olefin 2. Thus stoichiometric conversion of 1a is observed even though the expected styrene $\frac{1}{4}a$ polymerizes immediately.

A first order of reaction with respect to 2 was estimated from the slopes of the conversion curves at equal RLi concentration, f_o, but varying amounts **of 2. Accordingly, pseudo-first order plots, eq. (2), were linear for 2 if f.** was large, yielding the approximate rate constants k_{ψ} in Table I. Since k_{ψ} varied roughly as \sqrt{f} , we considered the reaction to be of 0.5 order with respect to la. As explained previously,^{1,2} it may then be inferred that dissociation of $R_{\textbf{v}} L i_{\textbf{v}}$ into two sub-units is kinetically important. Taking the **simplest possibility of a dimeric ground state, the rate law of eq.** *(3)* **app**lies. This may be rewritten as eq. (4) with $c = [2]$ and $f = 2[R_0Li_2]$ (as mea**sured by nmr intensities). It turns out that integration is possible in clo-**

$$
-d[R_2L_2]/dt = k_{3/2} [\tilde{z}] \sqrt{[R_2L_2]}
$$
 (3)

$$
-df/dt = \sqrt{2} k_{3/2} (f - f_0 + c_0) \sqrt{f}
$$
 (4)

$$
\frac{1}{\sqrt{f_0 - c_0}} \log \frac{\sqrt{f} - \sqrt{f_0 - c_0}}{\sqrt{f'} + \sqrt{f_0 - c_0}} = y = -2.303 \sqrt{2} k_{3/2} t + const
$$
 (5)

sed form to give y in eq. (5) which is valid for $f_0 > c_0$ (starting concentra**tions). Plots of y versus time showed good linearity over up** *to* **2.9 halflives, confirming a total order 3/2 for the reaction.**

The rate constants $k_{3/2}$ (Table I) are smaller than those for α -phenyl- β , β **dimethyl-vinyllithium lb. The orders of reaction in this case have been** shown² to be 0.5 for 1b and unity for 2. Since 1b metallates 2 with regener**ation of 2 (42), pseudo-first order constants (with respect to g) cannot be** measured, but were computed from $k_\psi = \sqrt{2} k_{3/2} f_0$ for comparison with other **derivatives (entry** *5 in* **Table I). The known temperature dependence2 was used** to extrapolate the rate constant to -44° (entry 6), relating it to the next **example.**

Fast Deprotonation by 2-(1-Lithio-benzylidene)-1,1,3,3-tetramethyl-indan

Entry	RLi				. - 0-					
		f_{o} M	$\mathbf{c}_{\mathbf{o}}$ M	Temp. $\mathbf{e}_{\mathbf{C}}$	10 ⁴ $\mathbf{k}_{\mathbf{\gamma}}$ s^{-1}			10^{4} k _{3/2} $M^{-1/2}$ s ⁻¹	relative rates k_{ψ}	
1	$\frac{1}{2}$	0.77	0.27	$+25$	1.54			1.24 ± 0.12		
\boldsymbol{z}	1a		$0.50 \t 0.16 \t +25$		1.13			1.15 ± 0.17		
\mathfrak{B}	1a		$0.60 \quad 0.20$	$+25$	1.50			$1.31 \quad \text{10.13}$	\equiv 1	
$\ensuremath{\textit{\textbf{4}}}$	$\frac{1a}{2}$		0.40 0.35 $+25$		\sim $-$			0.95 ± 0.2		
5	\mathfrak{B}			0.27 0.08 +26.5 14.7 ^a			20	±2	10	
6	$\frac{1}{2}$			0.27 0.08 -44 ca. 0.07 ^b			ca. $0.1b$		10	
7.	$\frac{1}{2}$			0.28 0.14 -44 0.78		±0.15			110	
8	$\frac{1}{2}$			2.6 $0.38 +26$ 0.0084 ±0.002					0.006	
9	$nc_{\mu}n_{q}Li$			1.2 $0.45 +29$ 2.6 ± 0.4					1.7	
a) see ref. 2; 0.93 M LiBr								b) extrapolated		

Table I. Formal starting concentrations (f_0) and rate constants k for reactions of vinyllithium derivatives RLi with olefin 2 (c_o) in $[D_2]$ THF.

The title compound $1e$ is very reactive¹ and metallates 2 readily at -44° **to yield 2 and 2-benzylidene-1,1,3,3-tetramethyl-indan 42 quantitatively. A pseudo-first order plot with respect to 2 showed acceptable linearity over more than two half-lives. No attempts were made to determine the orders of reaction more precisely because the numerical value of the rate constant would not have changed very much. Table I (entry 7) shows that 1c is more reactive than lb (entry 6) at the same temperature.**

Slow Deprotonation by Vinyllithium '

A very slow reaction (entry 8 in Table I; half-life ca. 43 h) occurs with vinyllithium 1d after introduction of olefin 2. Formation of 3 and ethylene 4d is equal within experimental error to the consumption of 1d and 2. As **above, the order of reaction was not investigated.**

Butyllithium

The deprotonation of 2 by n-butyllithium can be conveniently followed at +29' in the usual way. The pseudo-first order constant (entry 9 in Table I) is comparable to that of 1a. A little more than one equivalent of butyllithium was consumed per mol of 2 , but no attempts were made to correct for the very slow decomposition by $\left[D_8\right]$ THF and for ethylene addition.⁴

Discussion

Vinyllithium (1d) and butyllithium are reported to be tetrameric in THF⁵ and to deprotonate triphenylmethane⁵ with a rate ratio of ca. 1/5. The ratio **for addition to l,l-diphenyl-ethylene5 was l/2640. In metallation of olefin 2, we find relative rates of ca. 1/300. Such sequences may be somewhat dependent on concentrations if compounds with different orders of reaction are** to be compared.⁵ The reactivity scale $(k_w^r$ relative to $1a$) of vinyllithium **derivatives for deprotonation of 2 in THF is shown in the last column of Table I. It may depend on an interplay of several contributions: (i) Change of aggregation in the ground state, (ii) substituent-dependent basicity, and** (iii) steric hindrance against approach of olefin 2 in the transition state.

An a-phenyl group is not expected to increase the basicity of 1a over that **of ld or to decrease steric hindrance. Therefore, the considerably enhanced** reactivity of la as compared to the tetrameric vinyllithium 1d indicates la **to be less aggregated (perhaps dimeric, ' factor i). Further substitution of** the vinylic ß-hydrogen atoms by two methyl groups in 1b will increase the ba**sicity (or nucleophilicity; factor ii) and results in a tenfold rate enhancement. Another elevenfold acceleration is caused by two bulky** stituents in 1c (perhaps monomeric¹) and may reflect competition of factors **(i) and (iii).**

The deprotonation reactions described here exhibit kinetic features2 very similar to those of (E/Z) -isomerization (topomerization)¹ of 1a. The occur**ence of some common intermediates in both cases is compatible with the observed 0.5 orders of reaction and the activation parameters.^{1,2} Considering substituents, we note that tetrameric vinyllithiun and its alkyl-substituted derivatives do not show any tendency for (E/Z)-topomerization. ⁶ As above, an a-phenyl group is essential for obtaining measurable rates, ' presumably because of de-aggregation (factor i) and charge stabilization(factor ii). Since factor (iii) is irrelevant for carbanion inversion, it is reasonable that** steric compression in 1c accelerates the topomerization 24200fold¹ (compared to 1a) but impedes the approach of 2 (110fold acceleration only, Table **I). However,** the **relative importance of steric acceleration must be evaluated from further studies on model compounds.**

We gratefully acknowledge support by the Stiftung Volkswagenwerk.

REFERENCES AND NOTES

- **1. R. Knorr and E. Lattke, Tetrahedron Letters, 1977, in the press.**
- **2. R. Knorr and E. Lattke, preceding paper.**
- **3. D. Seyferth and M. A. Weiner, J. Am. Chem. Sot., &3, 3583 (1961).**
- 4. A. Maercker and W. Theysohn, Liebigs Ann. Chem., 747, 70 (1971).
- **5. P. West, R. Waack, and J. I. Purmort, J. Am. Chem. Sot., 2, 840 (1970).**
- **6. For leading references see: D. J. Cram, "Fundamentals of Carbanion Chemistry," Academic Press, New York and London, 1965, PP 130-135.**